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Abstract—This paper derives a complex dynamic stiffness function for a poroelastic layer and uses
this to examine the range of validity of solutions to Biot’s dynamic poroelasticity equations when
cither inertia or dissipation terms are neglected. It also examines the effects of certain inertia terms
and of surface boundary conditions on the solutions to these equations and presents a systematic
study of the effect of the dissipation term of Biot's theory on the system storage and loss moduli.

Biot's equations of poroclasticity are first phrased in terms of a single equation which governs
both the fluid and solid phase dilatational strains. A general solution to these equations is derived
in the Laplace domain and expressions for the displacement and stress Laplace transforms in a
poroclastic layer are obtained. The constants of integration occurring in these solutions are next
evaluated for the case of an impulsive load applied to once surface of the layer. Cases of both a
permeable and an impermeable loaded surface are considered. The resulting solutions for the
Laplace transform of the impulsive excitation response are then transformed into frequency domain
complex response functions, called dynamic stitfness functions, which characterize the stiffness and
damping of the layer. Parametric studies are then carricd out employing these complex frequency
response functions.

INTRODUCTION

Poroclastic matcrials are materials consisting of fluid-filled porous elastic solids. When the
material is deformed, the volume which contains the fluid is changed. Both the dynamic
stiffness of the material and the encrgy loss associated with its deformation are affected by
the flow of the viscous fluid within it. The mechanism of the energy dissipation of a
poroclastic material differs from that of a conventional solid material because of the
interactions between the fluid and the solid.

In a serics of papers, Biot (1941, 1955, 1956a, b) and Biot and Willis (1957) introduced
a general theory of linear poroelasticity. A number of investigators have used Biot’s theory
to study consolidation problems or the response of poroelastic materials to uniformly
moving or harmonically time varying loads. Although mathematical difficulties in solving
the complete equations have usually prompted neglect of either inertia terms or dissipation
terms, Biot’s complete dynamic equations have been used to study one-dimensional wave
propagation in semi-infinite poroelastic media by Biot (1956b), Chakravarti (1962), Garg
et al. (1974) and Hong et al. (1988) among others.

Wijesinghe and Kingsbury (1979) and Kingsbury (1984) used Biot’s equations to
examine the complex modulus, which is a measure of dynamic stiffness, of a poroelastic
slab with a permeable upper surface. They investigated both the “*quasi-static’ case without
inertia terms and the “dynamic™ (reduced dynamic) case without dissipation terms, thereby
allowing coupling terms involving either the dissipation or the inertia forces of the governing
equations to be neglected. Harmonic excitation was applied to the upper surface of the
poroelastic slab and the complex modulus for the poroelastic slab then determined. Sub-
sequently Okuno and Kingsbury (1989) extended the previous work to study energy dis-
sipation and complex moduli in problems involving two dimensional tension compression
and bending deformation of poroelastic materials; again by determining response to har-
monic excitation using Biot’s quasi-static equations.
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The present paper studies the etfects of inertia and dissipation coupling in Biot’s
complete equations by comparing the calculated response of a poroelastic layer based on
the complete governing equation with previously calculated response obtained on the basis
of equations which neglect either inertia or dissipation terms. [t also uses the derived
solutions to examine the effects of the dissipation coefficient. the mass coupling parameter
and surface flow effects on the predicted response of a poroelastic structure.

The response of the layer is first characterized in the Lapluce domain by means of a
dynamic stiffness transfer function [K(s)] which is defined as the ratio of the Laplace
Transform of the force excitation [/(s}] to that of the displacement response [O(x)]. K(s) is
obtained by evaluating the constants of integration ansing {rom the solution to Biot's full
dynamic equations for the case of a slab with fixed lower surface and upper surface subjected
to an impulse loading.

Once the transter function of the system is known. a frequency response function,
called the “complex dynamic stiffness™ which characterizes the steady state response in the
frequency domain, can be easily obtained by replacing the Laplace transform parameter s
by i where w is the frequency parameter.

The complex modulus, as derived by Wijesinghe and Kingsbury (1979). is a material
property which describes both the stiffness and damping in a material and can be obtained
from the complex dynamic stiffness at frequencies below the first natural frequency of the
structure.

Numerical results for the dimensionless complex dynamic stiffness for a poroelastic
slab with permeable and impermeable surfaces, are ilustrated and discussed. Comparisons
of the results obtained from the present study with the results of the carlier study by
Wijesinghe and Kingsbury (1979) for a poroclastic slab with a permeable upper surface are
then made. Finally, the cffects of the dissipation cocflicient, b, and the couphling mass
density, p, .. on this dimensioniess complex dynamic stiffness function are investigated,

THE GOVERNING BEQUATIONS

Biot's theory of lincar, isotropic poroelasticity is employed in this study, This for-
mulation assumes the porous material s constructed such that & solid matertal forms a
structure which contains statistically distributed small pores that are filled with a
Newtonian-viscous compressible fluid. The bulk material is assumed to be homogencous
on a macroscopic scale, and the pores are assumed to be interconnected. The solid skeleton
is taken to be lincar clastic and undergoing small deformation. The fluid low is assumed
to be of the Poiscuille type so that the fluid incrtia und the friction are uniquely churacterized
by the density, viscosity and the pore dimensions.

The equations governing the deformation of poroclustic materials given by Biot (1956b)
cian be written as

P

) - ‘
NV u+grad [(A+N)e+Q¢] = :-iz(p”u+p,3U)+l;;!(u—U). (hH
¢
hE , e .
grad [Qe+ Re] = e {(pua+p..U)—h ~i(u«b‘), (2)
ot ¢

where N, A. Q and R are material constants and the dissipation coeflicient A is defined as
h = ph*/x in which g is the fluid viscosity, ¢ is the porosity, & is Darcy's cocflicient of
intrinsic permeability, u is the average solid displacement vector, and U is the average fluid
displacement. The solid dilatation, ¢, and the fluid dilatation, ¢. are defined in the usual
manner for small deformation. The quantities p, ., p and p,, are apparent mass densities,
which take into account the non-uniformity of the relative fluid flow through the pores.
When there is no relative motion between the fluid and the solid, p. the total mass density
of the fluid-saturated material is given by : p = p,, +p::+2p,.. p can be expressed in terms
of the mass density of solid, p,. and the mass density of fluid. pr, as p = (I —d¥p.+
¢pr = p,+p- in which p, and p, arc the mass densitics per unit total volume of the solid
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and fluid, respectively. Biot showed that p, = p,,+p,2 and p, = p;:+p;. It is noted
that p,, represents the total effective mass of the solid moving in the fluid, p,; repre-
sents the total effective mass of that part of the fluid. and p,, represents a mass coup-
ling parameter between the fluid and the solid and these coefficients cannot be uniquely de-
termined in terms of the fluid and solid phase densities. Biot (1956b) also shows that the
mass coefficients have the following properties:

P20, p220. pi2<0.

The dynamic equilibrium equations of a poroelastic element in terms of skeleton and
fluid dilatational strains for poroelastic materials can be obtained by taking the divergence
of eqns (1) and (2) which yields

2

. ¢ 0
V*(Pe‘*‘Qe)=a—l:(Pne+P|25)+b§;(¢’-5)- 3

2
N

. i, bij
V:(Qe+ Re) = ﬁ(mze+ﬂ'zz€)—b§;(€'-€)- Q)

where P = 2N+ A. After rearrangements, eqns (3) and (4) can be written in the following
forms:

0? 0 d? é

2_ [N - JP I — 2 PUNESU | Y.
, & 2, w) )
Qv —Pizn +b —RV? +I’*27~+ 3 (6)

Substituting the £ in eqn (6) in terms of ¢ into eqn (5), yields

. ?‘ J d°
[HAA ﬁs"' + o) by Vit p‘,a +bp e e=0, 7

B, = PR-Q%,
B = (P+R+20)5,
ay = Ppy+Rpy —20p,,,

where

Pu = ﬂni’z:"ﬂx:h
pP=pitpatpn.

Similarly, the elimination of ¢ in eqns (5) and (6) yiclds the same differential equation for
e. Itis noted that eqn (7) has been derived by Chakravarti (1962) for obtaining the dynamic
stress in a poroelastic infinite medium with a spherical cavity.

In this study, the systems considered are assumed to be deformed from the initially
undeformed position and all stresses are zero at ¢ = 0.

INTEGRAL TRANSFORM SOLUTIONS

By taking the Laplace Transform of the differential equations of solid and fluid
dilatational strains, eqn (7), and using the initial conditions, bi-harmonic equations for the
solid and the fluid dilatational strains in the transform domain can be derived. Since the
differential equations for both dilatational strains are the same, the form of the general

SAS 29:5-H
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solutions for both are the same except for integration constants. Taking the Laplace
Transform with respect to time of eqns (6) and (7) and using the initial conditions, yields

(QV? —p 15" +b5)é = (= RV + p,.5” + bs)é. (8)
(V,_ﬂ35+1,s'vz+pos+pbsl)e_=o' )
B B

where € and ¢ are the Laplace Transforms of ¢ and . Equation (9) can be rewritten as a
product of two modified Helmholtz equations:

(VI—0i)(Vi=53)é =0, (10)
where
, o, .2
() = -+ " y= + 2
T A ‘J;.
and

Wy = (a,5+f2)° —4Bs(pos+bp).
W= Wtags
W, o= pys+bp.

The solution for onc-dimensional flow and deformation in a layer with transverse co-
ordinate = and thickness /i is next obtained.

The skeleton dilatational strain & can be found by superposition of the solutions
obtained for cach of the operators in eqn (10) in the form (¢ = &, +¢,) with the solutions
for &, and é, obtained from

(V:-d1)é, = 0. (11)
(Vi-383)é, = 0. (12)

5

In one-dimensional Cartesian co-ordinates, V? = ¢7/8z%, and the solutions to egns (11) and
(12) are combined to yield

é=4A,exp (0,2)+ Arexp (—=,2)+ A, exp (8;2) + A, exp (—612). (13)
The same procedure yiclds the fluid dilatation:
£ =B, exp (5,2)+ Byexp (—8,2)+ By exp (3:2)+ By exp (—912). (14)

A, and B, (i = 1, 2, 3, 4) appearing in eqns (13) and (14) are constants.
The relationship between the coefficients 4, and B; can be found by substituting €, eqn
(13), and £, eqn (14), into eqn (8) which yields
B, =CA (i=12234),

where
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—p15-+bs+ Q6]
C; = C: = pl‘~ Q.:’
p::s’+bS—Ro.

. {13

~p|:S:+bS+Q(5§

. o 6
p128"+bs— Ros (16)

Ci=Cy =

The expressions for the dilatational strains € and £ are substituted in the Laplace transformed
forms of eqns (1) and (2) to obtain the expressions for skeleton and fluid displacements (u
and U).

The solid phase displacement @(s) becomes

de dé .
Petlq pe=h
dé dé .
Qa‘;‘f“Ra‘E 225 +bs

u(s) = 3 3
pus +bs pyst—bs

P28 —bs  prsi+bs
(A d A dE

=l il ot 7
A d:+ - ("N

b
[«
T

where
A= (l’nv"""’{?)ﬁ'z.
Ay = (pss+D)P=(pas-h)Q.
Ay = (pax+h)Q—{ps—hR

The following result for i(s) is obtained by substituting the results for é, eqn (13), and &,
eqn (14), into eqn (17).

:C

A A . . .
a(s) = (AI + A )(),[A, exp (0,2) = A, exp (—6,2)]

A, A,
+ (.Aﬂ. + ~~"§1)62[A3 exp(d.n)—Agexp(—:2)]. (18)

Next, using the stress definitions and stress-strain relationships of Biot and Willis {1957)
and the results of solid and fluid strains, the solid stress, 6., and the fluid stress, &, for the
one-dimensional problems become

G.i(s) = IN :X" +AGHQE = Pe+ Qi = (P+QC)[A, exp (5:2) + A1 exp (= 9,2)]
+(P+QC)[Asexp (9:2)+ A, exp (=3:2)], (19)
G{s) = Q¢+ R = (Q+ RC)H[A, exp (3,2)+ A, exp (—5,2)]
+(Q@+RCy)[Asexp (8,2)+ A exp (—=0,2)]. (20)

DYNAMIC STIFFNESS TRANSFER FUNCTIONS

Next, the Laplace transform of the system response to an impulsive excitation is
obtained to yicld the system transfer function [K(s)] which is the ratio of the Laplace
Transform of the force excitation, /(s), to that of the displacement response, O(s), under the
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assumption that all initial conditions are zero. If an excitation is an impulse, fis) = 1, then
the transfer function is exactly the reciprocal of the Laplace Transform of impulsive response.

Once K(s) is obtained from impulse analysis. the response to any excitation can. in
theory. be determined by formulating /(s) and then finding the inverse Laplace transform
of I(s), K(s). Since K(5) is the ratio of force excitation to displacement response. it is denoted
as the “dynamic stiffness transfer function™.

Using the general solutions for the strain, stress and displacement transforms and
applying the suitable boundary conditions. the unknown integration coefficients, A,
(i = L. 2, 3, 4). appearing in the general solutions for strains and displacements of the solid
and the fluid are determined. Transfer functions are then obtained for layers with permeable
and impermeable upper surfaces.

AN INFINITE POROELASTIC LAYER WITH A PERMEABLE UPPER SURFACE

In this case. the load applied on the upper surface is represented as t,. = p,d(1) where
Dy is the amplitude of the impulsive loading. Here. 7.. = ¢..+¢ in which o_., eqn (19), is
the stress acting on the solid portions of the upper surface and o, egn (20). is the stress
acting on the fluid portions. Since the upper surface is permeable, the fluid pressure, p,
{(p = —o/p) 1s taken as zero. The lower surface of the poroelastic slab is fixed on a
rigid and impermeable plane. Accordingly, the solid displacement u must be zero and
the impermeable boundary condition implies a zero fluid pressure gradient on this face
(ép/cz = 0).

Making use of the stress-strain results, the Laplace transforms of the boundary con-
dition equations become

Togs o = 2NC.+ AC+ Q¢ = PC+ Qi = py,

Froop = QG+ RE =0,

ﬁx. - = {),

da dé di

s = Qe+ R =0, 21
d:;:.. 0 Qd: + dz b

Substitution of the expressions for &, eqn (13), £ eqn (14), and @ eyn (18), into eqn (21)
gives
Goe ot = (P=QC A, exp O M)+ (P+QC A exp (—8,h)
+(P+QC)A; exp (3. +(P+QC A exp (—d:h) = py,
Grown = (Q—=RCHA, exp (6 ) +(Q+RC A exp(—=3d:h)
+(Q+ RCy) A, exp (3:h) +(Q + RC3) Ay exp (—,/) = 0,

q s (4 A,C (A AC
.. = LR ("Ai + '*"“L)Ax -0y (&" + WA’_>A:

(A, AL, A, A_»C,) _
+0:<K+T)As‘52<‘A~+‘A Ay =0,

49 (Q+RCS A, —(Q+RC)S A +(Q+RC)S: 43~ (Q+RC)S:A4s = 0. (22)

~jz=0

Upon solving the equation set (22), the following results for the coefficients 4, 4,
A, and A, are obtained:
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P Po(CsR+Q)
LT T BU(C=C)lexp (8,h) +exp (—d,h)]
A)=A4= Po(C|R+Q) (23)

B(C\—C;)lexp (3:h) +exp (—d:h)]

With the substitution of eqn (23) into eqn (18), the final result for the solid displacement
transform, d(s) becomes

i(s) = [‘5'(C~‘R+Q) A +A.C, exp (6,2)—exp (—8,3)
BUC:—C) A exp (k) +exp (=d.h)

3:(C,R+Q) A, +A,C; exp ((52:)—exp(—(5zz):| 24)
Bi(Ci—Cy) A exp (9,h) +exp (—0d,h) |

Finally, the dynamic stiffness transfer function is obtained as

(5) (s )I . = [B.(Cs— |)]/
[5 tanh (5,h)(C, R+Q)'—+£—€—' —&, tanh (5,/)(C,R+Q) ‘+£2—§~’]. (25)

AN INFINITE LAYER WITH AN IMPERMEABLE UPPER SURFACE

The boundary conditions for this case in the Laplace Transform domain are given by

f.':|:-h = (P+ Q)E+(Q+R)£= [70‘

dg dé dé
azo " Qe R =0

l-l|:-0 =0,

dé di
47 _p% L r¥ 26)
dz. .0 z z

After solving the above equation set and obtaining the coefficient results 4, (i = [, 2, 3, 4),
the final result for a(s) at z = A becomes:

A +A,C,

T (Q+RC)

u(s) = {pué.éz tanh (6,4) tanh (3,h) [

A +4:C,
A

(Q+RC.)]}/{¢52 tanh (8;1)(P+Q+ RC,+QC)(Q+ RCy)
—d, tanh (8,A)(P+Q+ RC;+QC)(Q+RC))}. (27)
Using the above displacement result, the transfer function for this case is
K(s) = {3, tanh (6,h)(P+Q+ RC,+QC (@ + RCy)
—3d, tanh (6,M)(P+Q+ RC,+QC,))(Q + RCl)}/{é.éz tanh (,4) tanh (5,4)

xl:A,+A2C, A, +A,C,

@+ RCy) - = (Q+Rcl)]}. 28)
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Table 1. Muaterial propertics of a
poroelastic specimen

p* 5477784
o* 0.708907
R* 0.2753563
h* 9300564
o 3.701833E-9
ot 1.133610E-9
ot —0.87SIODE-Y

THE COMPLEX DYNAMIC STIFFNESS FUNCTION

If a transfer function of a system is given in the Laplace domain, the frequency domain
results can be obtained simply by changing the Laplace Transform parameter to i, where
wis a frequency parameter. The dynamic stitfness transfer function K(s) is then transformed
into a complex function of frequency, K(iw). which is called the complex dynamic stiffness
function.

The complex dynamic stiffness function K(inm) may be represented in terms of its real
and imaginary parts as K = K" +iK” or K = K'(1 +in) where 1 is the loss tangent, K7 is
the lost stiffness and K is the dynamic stiffness. K” and # are measures of energy dissipation
in the system,

Before evaluating the complex dynamic stiffness function in the frequency domain, the
parameters appearing in Kio) are first non-dimensionalized in the following manner

i ot P ) R
e I U L S
h h N N N
) ‘ bits W AR
pE zl/\‘,’. @* = wjwy, b= vopr et IV\) (i.j=1.2).
{ i{

where oy ts an arbitrary constant. Since results of this study are to be compared with results
presented by Wigesinghe and Kingsbury (1979), poroclastic material properties used by
those authors are employed in this study and shown in dimensionless form in Table L¥
These data represent the estimated properties for the compact bone but are otherwise
arbitrarily chosen.

EFFECTS OF SURFACE PERMEABILITY

The dimensionless dynamic stiffness, K°, and the loss tangent, 5, of the infinite poro-
elastic slub with permeable and impermeable surfaces with the properties of Table | are
shown in Figs [ and 2, respectively.

For the case of the impermeable upper surface, there is no relative motion between the
fluid and solid phases so the entire poroclastic material behaves as an clastic solid. The
stiffness remains constant and the loss constant remains zero below the first resonant
frequency of the layer. In the case of the permeable surface, on the other hand, the stitfness
is less at low frequencies but then increasces to reach that of the impermeable surface case
at high frequencics, At very low frequencies, the entire stiffness of the slab ts provided by
the solid phase alone, while at very high frequencies there is little relative motion of the
fluid with respect to the solid. It is in the intermediate frequency range that the energy
dissipated by the fluid flow relative to the solid skeleton becomes maximum resulting in a
maximum in the loss tangent as shown in Fig. 2. The frequency at which the loss tangent
is maximum will be denoted as the “critical™ frequency. w., in this paper.

$i* = 149x10° 1b in"%. M=09x10" b in"%, R=0248x10° b in 7, Q0 =060=«10" Ib in"-,
A=313x10°hin "L d=014h=254x10"bsin"* h=10 "mand s, = 1 s ' arcassumed.
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THE DIMENSIONLESS DYNAMIC STIFFNESS
AN INFINITE POROELASTIC SLAB

L]
Abhdbdad

|

] —— PERMRABLE UPPER SURFACE
— — DMPERMEABLE UPPER SURPACE

mic Stiffness

Dyn a:“

-1
i

R U R T B | 10 10* 10* o' g0
Dimensionless Frequency

P L]

(-}

Fig. 1. The dimensionless dynamic stiffness for an infinite poroelastic slab.

COMPARISON OF DYNAMIC RESULTS AND QUASI-STATIC RESULTS

The range of applicability of the quasi-static and dissipationless dynamic theories to
poroelastic structural response analysis is next explored. Results for the dimensionless
complex dynamic stiffness function obtained from the present study, eqn (24), and the results
for complex modulus obtained from Wijesinghe and Kingsbury's quasi-static analysis for
an infinite poroclastic slab with a permeable upper surface are compared in Fig. 3. Figure
3 shows that the results of the two are essentially identical in the range of frequencies below
the fundamental resonant frequency of the slab. The dimensionless dynamic stiffness K’
starts at a value of skelcton stiffness of fi1/R* = 3.654; and the loss tangent n starts at a
vialue of zero. This shows that at very low frequency range, the system’s behavior is
dominated by the stiffness of the solid skeleton. As frequency increases both £ and n
increase as well. When the loss tangent is maximum (w = w,), the rate of increase of K’ is
also greatest. At higher frequencies, since relative motion of fluid and solid decreases, the
loss tangent becomes small and K’ tends to a high but constant value. The final value of the
storage modulus obtained from Wijesinghe and Kingsbury's quasi-static investigation is

ﬁ{‘( Q*+R*\ _
G ‘+“}}F"' =717,

LOSS TANGENT
AN INFINITE POROELASTIC SLAB

(-3
2,
-3
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°-
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sc —— PERMEABLE UPPER SURFACE
e,
225
- X2
[
p-%
ns
3,
=
% -
<
n
Q
St s - o ~ ~ v -

¢ 10" 10" g to 10" 10 10* 10t
Dimensionless Frequency

——

Fig. 2. The loss tangent of an infinite poroelastic siab,
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THE DIMENSIONLESS COMPLEX DYNAMIC STIFFNESS
DYNAMIC RESULTS & QUASI-STATIC RESULTS
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Fig. 3. The dimensionless complex dynamic stiffness—dynamic results and quasi-static results.

which is very close to that predicted by the complete theory. For example, at w* = {800,
the value of K’ obtained from the present study is 7.154. The results of the two analyses
start to diverge significantly at w* = 10*, and above this frequency, the resonant response
of the dynamic stiffness is predicted only by the complete theory.

DYNAMIC RESULTS AND REDUCED DYNAMIC RESULTS

In the higher frequency range, the resonance phenomena in poroclastic materials
observed by Wijesinghe and Kingsbury in their “dynamic” {reduced dynamic) case can be
obtained directly from the complete theory results by setting the dissipation coetlicient b
cqual to zero. Figure 4 compares the results for the complete dynamic theory with the
results for the reduced dynamic case which excluded the dissipation terms. It is observed
that the complete theory predicts a higher fundumental resonant frequency as well as a
higher stiffness than that of the reduced dynamic case. For this particular case, the resonant
frequency predicted by the complete theory is near the fourth resonance of the reduced
theory.

[t may be concluded that lack of dissipation terms in the equation results in inaccurate
prediction of all resonant frequencies including the lowest.

THE DIMENSIONLESS COMPLEX DYNAMIC STIFFNESS
o DYNAMIC RESULTS & REDUCED DYNAMIC RESULTS

a -
-~

w1
n
Qv
co
=%
i lossssine
P s e St R ]
° 1.0€3,3.648410) |
|
3 :
o ~ — Dyn, Stiffnass - Dyn. Rexults ¢
> ——— Dyn. Rtiflness - Reduced Dyn. Results ¢
QS i
e
2 - . . .
1]
10 10" 1ot

Dimensionless Frequency

Fig. 4. The dimensionless complex dynamic stiffness—dynamic results and reduced dynamic resuits.
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EPFICTS OF b’ ON THE DIMENSIONLESS COMPLEX DYNAMIC STIFFNESS
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Fig. 5. Effects of dissipation coefficient 4* on the dimensionless complex dynamic stiffness.

EFFECTS OF 6* AND pt; ON A DIMENSIONLESS COMPLEX DYNAMIC STIFFNESS FUNCTION

The influences of the dimensionless coupling apparent mass, p?,, and of the dimen-
sionless dissipation, b*, on a dimensionless complex dynamic stiffness function are next
examined for the casc of a slub with a permeable upper surface.

Figure S shows results for the influence of h* on K(im*). It is observed that the critical
frequency, w?, increases as the dissipation, *, decreases. When the dissipation term is
neglected (h* = 0), the viscous interactions between the fluid and the solid disappear as
well. The loss tangent then approaches zero, and the dynamic stiffness of the poroclastic
material depends solely on the stiffness of the skeleton (f1/R*).

For non-z¢ro valuces of b*, the value of w, decreases as b* increases, but the maximum
value of the loss tangent is essentially independent of b*. This is in agreement with the
findings of Okuno and Kingsbury (1989) who showed that the maximum value of it depends
only on the compressibilitics of the poroclastic material constituents,

Finally, the influence of the coupling density, pt,, on the amplitude of the maximum
dynamic stiffness, K/,,.. and the amplitude of the maximum loss tangent, #,,.., is explored
in Fig. 6. When the absolute value of p¥, increases from 0 to 1.1336 x 10~? (p%,), then to
3.7185x 107? (p?,), the amplitudes of K., and .., increase accordingly.

These effects are very small in the low frequency region as shown in the lower part of
Fig. 6. As the frequency approaches the layer resonant frequency, however, it is seen that
the value of p, has a very pronounced cffect on the dynamic stiffness. This implies that
the as yet unresolved problem of evaluating p,, must be attacked if Biot's equations are to
be used to predict resonant response.

EFFECTS OF o', ON THE DIMENSIONLESS COMPLEX DYNAMIC STIFPNLSS
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Fig. 6. Effects of pt, on the dimensionless complex dynamic stiffncss.



632 H.-S. Tsay and H. B. KinGgssURy
CONCLUSIONS

The complex dynamic stiffness of a poroelastic layer has been determined by solving
Biot’s complete equations of poroelasticity for the case of an impulsive pressure applied to
a surface. The resulting expression is used to study the effects of neglecting either inertia or
dissipation terms in the complete theory as well as the effects of surface permeability.
dissipation coefficient and coupling density on layer dynamic stiffness and energy
dissipation.

It was found that the quast static theory accurately predicts layer response below the
first structural resonant frequency while the reduced dynamic theory does not accurately
predict the layer resonant frequencies.

If both surfaces are impermeable, the layer behaves as a homogeneous solid with
constant stiffness and zero damping below the resonant frequency. If, on the other hand,
flow through a surface is permitted. there is a frequency range in which the storage constant
increases and the loss tangent achieves a maximum value,

The frequency of the maximum value of the loss tangent is dependent upon the value
of the dissipation coeflicient but the maximum value itself is independent of b.

Finally, it is shown that although the coupling density coefficient, p .. has little effect
on the dynamic stiffness at low frequencies its value must be chosen correctly in order to
accurately predict luyer response at frequencies approaching the layer resonant frequency.

REFERENCES

Biot, M. AL (1941). General theory of three dimensional consolidation. J. Appl. Phys. 12, 155 164

Biot, M. A. (1953). Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26, 182
I8S.

Biot, M. A. (1956a). General solutions of the equations of clasticity and consolidation for a porous material. J.
Appl. Mech (Trans. ASMEY 23, 91 96,

Biot, M. A. {1956b). Theory of propagation of clastic waves in a fluid-saturated porous solid - 11 low-frequency
range - i, higher frequency range. J. dcoust. Soc. Am. 28(2), 168 191,

Biot, M. A, and Willis, D. G. (1957). The clastic coctlicients of the theory of consolidation. J. Appl. Mech. (Trans.
ASME) 24, 594 601,

Chakravarti, N, B, (1962). Dynamic stresses in a poroclastic infinite medium with a spherical cavity, J.S.ER.
309 318,

Garg, S. K., Nayfa, A. L1 and Good, A, J. (1974). Compressional waves in fluid-saturated elastic porous media.
J. Appl. Phys. 45(5), 1968 1974,

tiong, $. 1., Sandhu, R, S. and Wolfe, W. E. (1988). On Gurg's solution of Biot's equation for wave propugation
in a one-dimensional fluid-saturated elastic porous solid. Int. J. Num. Anal. Meth. Geomech. 12, 627-637.

Kingsbury, H. B. (1984). Determination of material parameters of poroclastic media, In Fundamentals of Transport
Phenomena in Porous Media (Edited by J. Bear and M. Corapeioglu), pp. S81-615. Martinus Nijhofl, Dordrecht.

Okuno, A. and Kingsbury, H. B. (1989). Dynamic modulus of poroclastic materials. J. Appl. Mech. 56, $35-540.

Wijesinghe, A. M. and Kingsbury, H. B. (1979). On the dynamic behavior of poroclastic matertals. J. Acoust.
Soc, Am. 65(1), 9695,



